Summation of Series

Arithmetic Series

$$
S_{n}=\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})
$$

This equation gives the value of the sum of a certain number of terms (n) in an arithmetic sequence. a is the first term of the sequence and d is the difference between terms.
An arithmetic sequence is a sequence where there is the same difference between each term. For example, $1234 \ldots(a=1$ and $d=1)$ or $191494 \ldots(a=19, d=-5)$
The equation for any term in an arithmetic sequence is $U_{n}=a+(n-1) d$, so if $U_{1}=a=3$ and $d=$ 12 , then $U_{7}=3+(7-1) 12=75$

Proof
If $S_{n}=a+(a+d)+(a+2 d)+\cdots+(a+(n-3) d)+(a+(n-2) d)+(a+(n-1) d) \quad$ (A)
Then $S_{n}=(a+(n-1) d)+(a+(n-2) d)+(a+(n-3) d)+\cdots+(a+2 d)+(a+d)+a$ (B)
Comparing similarly highlighted terms, they add to $2 a+(n-1) d$ and so
$(\mathrm{A})+(\mathrm{B})=2 S_{n}=n(2 a+(n-1) d)$
So $S_{n}=\frac{n}{2}(2 a+(n-1) d)$

Geometric Series

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}
$$

This equation gives the value of the sum of a certain number of terms (n) in a geometric sequence. As before, a is the first term of the sequence, but r is the ratio between terms.
A geometric sequence is a sequence where there is the same ratio between terms. For example, $24816(a=2, r=2$ - meaning you must multiply by 2 to get the next term) or $160161.60 .16(a=$ $\left.160, r=\frac{1}{10}\right)$
The equation for any term in a geometric sequence is $U_{n}=a r^{(n-1)}$, so if $U_{1}=a=4$ and $r=3$, then $U_{8}=4 \times 3^{(8-1)}, U_{8}=8748$

Proof

If $S_{n}=a+a r+a r^{2}+\cdots+a r^{n-3}+a r^{n-2}+a r^{n-1}$
then $r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n-2}+a r^{n-1}+a r^{n} \quad(B)$
(A) - (B) $=S_{n}-r S_{n}=a-a r^{n}$ [as all other terms are cancelled out]

So $S_{n}(1-r)=a\left(1-r^{n}\right)$
Re-arranging gives $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$

Sum to infinity

$$
S_{\infty}=\frac{a}{1-r}
$$

This expression can only be used for a geometric series that is convergent, meaning $-1<\mathrm{r}<1$ and so adding up every term in the series to infinity will give a certain value.
For example, if $a=4$ and $r=\frac{1}{2}$ we have the terms $421 \frac{1}{2} \frac{1}{4}$ and so on.
The sum to infinity is given by $S_{\infty}=\frac{4}{1-\frac{1}{2}}=8$ we can see that this could be true merely by considering the first five terms. $4+2+1+\frac{1}{2}+\frac{1}{4}=7 \frac{3}{4}$ so we can see how this summation is approached 8 .

Proof
Consider the equation

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}
$$

as $n \rightarrow \infty^{1}, r^{n} \rightarrow 0$ so effectively

$$
S_{\infty}=\frac{a(1-0)}{(1-r)}
$$

so

$$
S_{\infty}=\frac{a}{1-r}
$$

The reason for $r^{n} \rightarrow 0$, is if you consider $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \ldots$ the result will get smaller and smaller and so closer and closer to 0 .

References

Attwood, G. et al. (2017). Edexcel A level Mathematics - Pure - Year 2. London: Pearson Education. pp.6373.

[^0]
[^0]: ${ }^{1}$ This means "as n tends to infinity" or "as n approaches infinity".

